ELECTROGENERATED ACID AS A POWERFUL CATALYST FOR TRANSFORMATION OF EPOXIDES TO KETONES AND ACETONIDES

Kenji Uneyama, Akihiro Isimura, Kazuyuki Fujii, and Sigeru Torii* Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700, Japan

Summary: Electrochemical Transformation of epoxides $\frac{1}{2}$ to ketones $\frac{2}{2}$ and acetonides $\frac{3}{2}$ were achieved by using an electrogenerated acid-catalyst. A combination of $M(C10_A)_{n}$ [M; Li, Na, Mg, n = 1, 2] with polar aprotic solvents [CH_2Cl_2 , $CLCH_2CH_2Cl$, THF, $CH₃COCH₃$, AcOEt, (MeO)₂CO] is useful for the electrochemical transformation.

Much attention has been paied to the electrochemical techniques as a potential tool in synthetic chemistry. Electrolysis procedure can be frequently employed for oxidation and reduction of organic compounds. However, very little is known about the acid-catalyzed reaction in an anodic process although several electrochemical reactions in MeCN-LiClO $_{\iota}$ -Pt $^{1)}$ and MeOH-LiClO₄ or Et₄NClO₄-Pt systems ²⁾ have been explained in terms of an acid-catalysis. We describe here a practical method for the transformation of epoxides 1 to ketones 2 and acetonides 2 promoted by a powerful electrogenerated acid. During our study, an electrontransfer chain reaction for an electrochemical ring opening of some epoxides has been proposed. ³⁾ In contrast to this, the present electrochemical transformation of epoxides $\frac{1}{n}$ to ketones 2 is an electrogenerated acid-catalyzed reaction.

A typical electrolysis condition is as follows; A mixture of $\underline{1a}$ (0.2 mmol) and LiClO₄ (1.0 mmol) dissolved in CH₂Cl₂ (7.5 ml) – THF (0.5 ml) $^{4)}$ was electrolyzed under a constant current (10 mA for 1 min, 0.03 F/mol) at room temperature using platinum foils as electrodes in an undivided cell, affording $2a(91%)$ and 8-benzyloxy-2,6-dimethyloct-1-en-3-ol $(4a)(8%)$. The electrochemical transformation of 1 to 2 is characterized by the following facts; (1) The reaction completes by passing a very small amount of electricity $(0.02 - 0.1 \text{ F/mol})$, (2) Without electrolysis no $2a$ was detected and $1a$ was recovered, (3) By electrolysis in a divided cell $2a$ was obtained only from an anolyte and $1a$ was completely recovered from a

catholyte, (4) Ketone $2a$ was obtained in good yield (91%) evenwhen $1a$ was allowed to react in a preelectrolyzed solution, 5) (5) Presence of pyridine (1 eq) in the preelectrolyzed solution inhibited the conversion and no $2a$ was detected, (6) In the prolonged electrolysis, a dark gray lithium metal deposited on the cathode and a check of pH revealed that the electrolysis solution was acidic, (7) The electrolysis gave higher yield and selectivity than those of the usual acid-catalysis (Table 2). These experimental results strongly suggest that the electrochemical conversion is an electrogenerated acid-catalyzed reaction rather than an electrontransfer chain reaction.³,6)

The mechanism on the generation of the electrogenerated acid is not uncovered yet. However, it is plausible that oxidation of a trace amount of water existing in the electrolysis solution would generate a naked acid in an unbuffered condition which is therefore extremely strong in aprotic solvents.^{')}

The effect of electrolytes is important. Perchlorates such as LiClO_{Λ} (91%, 0.02 F/mol), NaC10₄ (90%, 0.04 F/mol), and Mg(C10₄)₂ (79%, 0.04 F/mol in THF) significantly promoted the conversion. Use of \texttt{Et}_{Δ} NClO_{Δ} provided $\underline{2a}$ in a good yield (89%) but it required more electricity (0.5 F/mol in CH₂Cl₂). Interestingly, use of Et₄NOTs in CH₂Cl₂ led to the preferential formation of $\frac{4a}{12}$ (57%) although the current efficiency was unsatisfactory (3.1 F/mol). In contrast, both Et₄NBr and CF₃CO₂Li did not give the desired ketones. Use of Et₄NBr in CH₂Cl₂ resulted in a recovery of $\frac{1}{2}$ even after 3.7 F/mol of electricity was passed. On electrolyzing $\frac{1}{2}$ with CF₃CO₂Li, debenzylation took place in part, affording benzaldehyde (21%) and 6,7epoxy-3,7-dimethyloctan-1-ol (19%) along with the recovered $\underline{1a}$ (70%) after 4.5 F/mol.

Aprotic solvents such as CH₂Cl₂ (91%), ClCH₂CH₂Cl (95%), THF (85%), Me₂CO₃ (75%), and AcOEt (76%) are useful for the purpose. However, use of MeCN (simply distilled once over P_2O_5) and MeOH (treated with Mg and distilled) did not promote the electrochemical reaction.

Similarly, the electrochemical conversion of 1 into acetonides 3 was performed by electrolyzing $\frac{1}{2}$ in a distilled acetone containing LiC10₄ or Mg(C10₄)₂ at room temperature. Particularly noteworthy is the fact that the electrochemical acetonidation can be performed by use of a trace amount of LiClO₄ (1% mol eq to $\frac{1}{2}$) and a catalytic amount of electricity (0.1 F/mol). The selectivity of the acetonidation is strictly controlled by the concentration of LiClO₄ ; [Acetonide $\frac{3c}{2}$ (%) : Ketone $\frac{2c}{2}$ (%) (LiClO₄ mol eq to $\frac{1}{4}$), 87:5 (0.01), 76:15 (0.2), 61:28 (2.0), 51:40 (12)]. Ketone $\frac{2c}{2}$ increased with the concentration of LiClO_A presumably because in the high concentration of the salt the intermediate carbenium ion would be significantly associated with LiClO₄ as proposed by Pocker, $^{8)}$ thus retarding nucleophilic attack of acetone. As an electrolyte, LiClO₄ (87%, 0.1 F/mol), NaClO₄ (84%, 0.16 F/mol), Mg(ClO₄)₂ (90% 0.1 F/mol), and LiBF₄ (81%, 0.1 F/mol) were effective. However, Et_ANC10_4 gave poor yield and current efficiency (37%, 1.7 F/mol) and the use of Et_ANBr or Et_ANOTs resulted recovery of $\underline{1\overline{c}}$ even after 2.0 F/m01 of electricity was passed.

The electrolysis of the corresponding diol of $\underline{1c}$ in LiClO_{Λ} - acetone provided $\underline{3c}$ (85%, 0.3 F/mol) although the current efficiency was lower than that of epoxide \lg (0.1 F/mol). In contrast to this, cyclohexene oxide gave cyclohexene diol (91%) as a sole product which could not be converted to the corresponding acetonide evenwhen 1 F/m01 of electricity was passed. This result suggests that acyclic diols also can be transformed into acetonides by the present electrolytic method.

The results of the electrochemical rearrangement of epoxides $\frac{1}{4}$ to ketones $\frac{2}{4}$ and acetonides 3 are summarized in Table 1. Acyclic w-epoxyisoprenoids $\frac{1}{4} = 1$ were converted to $2a-2f$ and <u>3a</u>-<u>3f</u> in satisfactory yields. Functional groups involved in <u>1</u> (OH, OAc, SO₂Ph, CHO, and C=C and C \equiv C bonds) did not change in the electrolysis conditions. Epoxides \underline{h} derived from isosafrole provided $1-(3,4-\text{methylenedioxyphenyl)propan-2-one (2h) (82%)$, a synthetic precursor of α -methyldopa.⁹) Similarly, menthene oxide $\frac{11}{4}$ gave a mixture of menthone and isomenthone $(72%)$. Although epoxide $\underline{1}i$ of a long chain fatty acid (erucic acid) is less reactive, it could be converted to the corresponding ketone $2j$ (82%) and acetonide $2j$ (84%). Electrolysis of $\underline{1k}$ proceeded very slowly (1.22 F/mol), affording triphenylmethyl phenyl ketone $\underline{2k}$ (30%) along with benzophenone (69%). In contrast, the reaction of $\underline{1k}$ in a preelectrolyzed solution provided $2k$ in 97% yield (After 2.53 F/mol, $1k$ was added to the preelectrolyzed solution and stood for 2.5 h.).

The result of the electrochemical rearrangement $(1 \rightarrow 2)$ apparently demonstrates usefulness of the electrolysis method (Table 2) in comparison with the conventional chemical acidcatalyzed reaction. On the contrary to the electrolysis, the action of $BF₃$ etherate in benzene which is one of the most widely employed reagents for the epoxide ring opening induced

			Product %		Product %
	Epoxide \mathbf{I}	F/mol	$\underline{3}^B$ $2^{\mathbf{A}}$ \bullet	Epoxide $\frac{1}{2}$	F/mol $\frac{3}{2}$ ^B 2^{A}
	٠R			\overline{a} OPh	67 0.06 \star 0.09 (83)
\overline{a}	$R, \; ;$ Ph	0.09 0.2	91 $***$ (86)	$\mathop{\underline{\mathbf{h}}}$	$\mathbf c$ 82 0.06 $(85)^*$ 0.09
b	OН	0.06 0.17	74 $(70)^*$		
$\mathbf C$	ÓАс	0.03 0.1	80 \star (87)	$\frac{1}{1}$	72 ^C 0.12
d	CHO	0.04 0.06	88 $\star\star$ (83)	j	82 ^D 0.23 $(84)^*_{G}$ $c_{11}h_{22}c_{2}$ Me 0.72
e	OAc	0.01 0.1	F 87 \star (88) ^{$\dot{ }$}	c_{8} H \overline{K} -Ph Ph	1.22 30
f	SO ₂ Ph	0.03 0.15	88 _{**} (85)	Ph P _h	97 E 2.53

TABLE 1. Electrochemical Transformations of Epoxides 1 to Ketones 2 and Acetonides 3

A) $\frac{1}{2}$ (0.2 mmol), LiClO₄ (1 mmol) and Et₄NClO₄ (0.5 mmol) in CH₂Cl₂ (a - g), ClCH₂CH₂Cl (h, i, j), CH_2Cl_2 -THF (k) (8 ml) at room temp. Current density (mA/cm²) 6.7 (a,b,i,k), 3.3 (d,e,g,h,j) and $\overline{1.7}$ (c,f). B) Yield of $\frac{3}{2}$ is indicated by (%): *; LiClO₄, **; Mg(ClO₄)₂. C) at 75 °C. D) at 65 °C. E) Reaction in a preelectrolyzed solution. F) leq (2.4 mmol) G)53°C

in part Wagner-Meerwein type rearrangement, affording 7-benzyloxy-2,2,5-trimethylheptan-l-al (16%) as a by-product along with the desired ketone 2s (77%).

Acid	Time	Product	(2) Acid	Time	(2) Product
		2a			$\frac{2a}{2}$
Electrolysis	1 min	91			
CH ₃ COOH	12 _{hr}	0	60% HC10 $_A$ aq	1 min	77
HCOOH	12 _{hr}	$\mathbf 0$	TsOH	1 min	47e
CF ₃ COOH	1 min	49 ^b	47% BF_{3} - etherate ^c	1 min	77d

TABLE 2. A Comparison between Electrochemical and Chemical Acid-catalyzed Rearrangements of $\frac{1}{2}$ to $\frac{2}{3}$ in CH₂C1₂.

a) Reaction of la with 1 eq of acid at room temperature. b) The corresponding diol monotrifluoroacetate (50%) was obtained . c) In benzene. d) 7-Benzyloxy-2,2,5-trimethylheptan-l-al (16%) was isolated as a by-product. e) $\frac{4a}{53}$ was obtained as a by-product.

Acknowledgement: The authors are grateful **to** the Ministry of Education, Science, and Culture for a financial support by a Grant-in-Aid (No. 57118002) for the Special Project Research (Innovative Studies on Highly Selective Synthesis).

References and Notes

- 1) (a) E. A. Mayeda, L. L. Miller, and J. F. Wolf, <u>J. Am. Chem. Soc</u>., <u>94,</u> 6812 (1972). (b) E. A. Mayeda and L. L. Miller, Tetrahedron, 28, 3375 (1972). (c) J. Y. Becker and B. Zinger, <u>J. Am. Chem. Soc</u>., <u>104</u>, 2327 (1982). (d) Idem., <u>J. Chem. Soc., Parkin II</u>, 395 (1982). (e) S. Torii, H. Tanaka, and S. Nakane, Bull. Chem. Soc., Jpn., 55, 1673 (1982).
- 2) (a) P. G. Gassman and Y. Yamaguchi, <u>J. Am. Chem. Soc</u>., <u>101</u>, 1308 (1979). (b) T. Imagawa, Y. Nakashima, and M. Kawanisi, Chem. Lett., 1609 (1980). (c) S. Torii, T. Inokuchi, and K. Yoritaka, J. Org. Chem., 46, 5030 (1981). (d) S. Torii, T. Inokuchi, and R. Oi, Ibid., $47, 47 (1982)$.
- 3) J. Delaunay, A. Lebouc, A. Tallec, and J. Simonet, J. Chem. Sot., Chem. Commun., 387 (1982)
- 4) Methylene chloride was once distilled over $P_{2}O_{\varsigma}$ and THF was dried with sodium-benzophenone and distilled.
- 5) After electrolyzing the solution (CH₂Cl₂-THF-LiClO₄, 10 mA for 1 min, 0.03 F/mol), <u>la</u> was added to the solution and allowed to react for 3 min.
- 6) R. Kossai, J. Simonet, and G. Dauphin, <u>Tetrahedron Lett</u>., <u>21</u>, 3575 (1980).
- 7) (a) Ref. la and lb. (b) L. C. Portis, J. C. Roberson, and C. K. Mann, <u>Anal. Chem</u>., <u>44</u>, 294 (1972). (c) H. Schmidt and J. Noack, Angew. Chem., 69, 638 (1957).
- 8) Y. Pocker and B. P. Ronald, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 5311 (1980).
- 9) The BF₃ etherate catalyzed conversion of $\underline{1b}$ into $\underline{2b}$ (69%) was reported. J. Tsuji, H, Nagashima, and K. Sato, Tetrahedron Lett., 23, 3085 (1982).

(Received in Japan 3 March 1983)