ELECTROGENERATED ACID AS A POWERFUL CATALYST FOR TRANSFORMATION OF EPOXIDES TO KETONES AND ACETONIDES

Kenji Uneyama, Akihiro Isimura, Kazuyuki Fujii, and Sigeru Torii^{*} Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama 700, Japan

Summary: Electrochemical Transformation of epoxides <u>1</u> to ketones <u>2</u> and acetonides <u>3</u> were achieved by using an electrogenerated acid-catalyst. A combination of M(ClO₄)_n [M; Li, Na, Mg, n = 1, 2] with polar aprotic solvents [CH₂Cl₂, ClCH₂CH₂Cl, THF, CH₂COCH₂, AcOEt, (MeO)₂CO] is useful for the electrochemical transformation.

Much attention has been paied to the electrochemical techniques as a potential tool in synthetic chemistry. Electrolysis procedure can be frequently employed for oxidation and reduction of organic compounds. However, very little is known about the acid-catalyzed reaction in an anodic process although several electrochemical reactions in MeCN-LiClO₄-Pt ¹⁾ and MeOH-LiClO₄ or Et₄NClO₄-Pt systems ²⁾ have been explained in terms of an acid-catalysis. We describe here a practical method for the transformation of epoxides $\frac{1}{1}$ to ketones $\frac{2}{2}$ and acetonides $\frac{3}{2}$ promoted by a powerful electrochemical ring opening of some epoxides has been proposed. ³⁾ In contrast to this, the present electrochemical transformation of epoxides $\frac{1}{1}$ to ketones $\frac{1}{2}$ to ketones $\frac{2}{2}$ is an electrogenerated acid-catalyzed reaction.

A typical electrolysis condition is as follows; A mixture of $\underline{1a}$ (0.2 mmol) and LiClo₄ (1.0 mmol) dissolved in CH₂Cl₂ (7.5 ml) - THF (0.5 ml)⁴⁾ was electrolyzed under a constant current (10 mA for 1 min, 0.03 F/mol) at room temperature using platinum foils as electrodes in an undivided cell, affording $\underline{2a}$ (91%) and 8-benzyloxy-2,6-dimethyloct-1-en-3-ol ($\underline{4a}$) (8%). The electrochemical transformation of $\underline{1}$ to $\underline{2}$ is characterized by the following facts; (1) The reaction completes by passing a very small amount of electricity (0.02 - 0.1 F/mol), (2) Without electrolysis no $\underline{2a}$ was detected and $\underline{1a}$ was recovered, (3) By electrolysis in a divided cell $\underline{2a}$ was obtained only from an anolyte and $\underline{1a}$ was completely recovered from a

catholyte, (4) Ketone $\underline{2a}$ was obtained in good yield (91%) evenwhen $\underline{1a}$ was allowed to react in a preelectrolyzed solution, ⁵⁾ (5) Presence of pyridine (1 eq) in the preelectrolyzed solution inhibited the conversion and no $\underline{2a}$ was detected, (6) In the prolonged electrolysis, a dark gray lithium metal deposited on the cathode and a check of pH revealed that the electrolysis solution was acidic, (7) The electrolysis gave higher yield and selectivity than those of the usual acid-catalysis (Table 2). These experimental results strongly suggest that the electrochemical conversion is an electrogenerated acid-catalyzed reaction rather than an electrontransfer chain reaction. 3), 60

The mechanism on the generation of the electrogenerated acid is not uncovered yet. However, it is plausible that oxidation of a trace amount of water existing in the electrolysis solution would generate a naked acid in an unbuffered condition which is therefore extremely strong in aprotic solvents.⁷⁾

The effect of electrolytes is important. Perchlorates such as $LiClo_4$ (91%, 0.02 F/mol), $NaClo_4$ (90%, 0.04 F/mol), and $Mg(Clo_4)_2$ (79%, 0.04 F/mol in THF) significantly promoted the conversion. Use of Et_4NClo_4 provided $\underline{2a}$ in a good yield (89%) but it required more electricity (0.5 F/mol in CH_2Cl_2). Interestingly, use of Et_4NOTs in CH_2Cl_2 led to the preferential formation of $\underline{4a}$ (57%) although the current efficiency was unsatisfactory (3.1 F/mol). In contrast, both Et_4NBr and CF_3CO_2Li did not give the desired ketones. Use of Et_4NBr in CH_2Cl_2 resulted in a recovery of $\underline{1a}$ even after 3.7 F/mol of electricity was passed. On electrolyzing $\underline{1a}$ with CF_3CO_2Li , debenzylation took place in part, affording benzaldehyde (21%) and 6,7-epoxy-3,7-dimethyloctan-1-ol (19%) along with the recovered $\underline{1a}$ (70%) after 4.5 F/mol.

Aprotic solvents such as CH_2CI_2 (91%), $C1CH_2CH_2CI$ (95%), THF (85%), Me_2CO_3 (75%), and AcOEt (76%) are useful for the purpose. However, use of MeCN (simply distilled once over P_2O_5) and MeOH (treated with Mg and distilled) did not promote the electrochemical reaction.

Similarly, the electrochemical conversion of $\frac{1}{2}$ into acetonides $\frac{3}{2}$ was performed by electrolyzing $\frac{1}{2}$ in a distilled acetone containing LiClO₄ or Mg(ClO₄)₂ at room temperature. Particularly noteworthy is the fact that the electrochemical acetonidation can be performed by use of a trace amount of LiClO₄ (1% mol eq to $\frac{1}{12}$) and a catalytic amount of electricity (0.1 F/mol). The selectivity of the acetonidation is strictly controlled by the concentration of LiClO₄; [Acetonide $\frac{3}{2}$ (%) : Ketone $\frac{2}{2}$ (%) (LiClO₄ mol eq to $\frac{1}{2}$), 87:5 (0.01), 76:15 (0.2), 61:28 (2.0), 51:40 (12)]. Ketone $\frac{2}{2}$ increased with the concentration of LiClO₄ presumably because in the high concentration of the salt the intermediate carbenium ion would be significantly associated with LiClO₄ as proposed by Pocker,⁸ thus retarding nucleophilic attack of acetone. As an electrolyte, LiClO₄ (87%, 0.1 F/mol), NaClO₄ (84%, 0.16 F/mol), Mg(ClO₄)₂ (90% 0.1 F/mol), and LiBF₄ (81%, 0.1 F/mol) were effective. However, Et₄NClO₄ gave poor yield and current efficiency (37%, 1.7 F/mol) and the use of Et₄NBr or Et₄NOTs resulted recovery of $\frac{1}{2}$ even after 2.0 F/mol of electricity was passed.

The electrolysis of the corresponding diol of $\underline{\underline{1c}}$ in LiClO_4 - acetone provided $\underline{\underline{3c}}$ (85%, 0.3 F/mol) although the current efficiency was lower than that of epoxide $\underline{\underline{1c}}$ (0.1 F/mol). In contrast to this, cyclohexene oxide gave cyclohexene diol (91%) as a sole product which could not be converted to the corresponding acetonide evenwhen 1 F/mol of electricity was passed. This result suggests that acyclic diols also can be transformed into acetonides by the present electrolytic method.

The results of the electrochemical rearrangement of epoxides $\underline{1}$ to ketones $\underline{2}$ and acetonides $\underline{3}$ are summarized in Table 1. Acyclic ω -epoxyisoprenoids $\underline{1a}-\underline{1f}$ were converted to $\underline{2a}-\underline{2f}$ and $\underline{3a}-\underline{3f}$ in satisfactory yields. Functional groups involved in $\underline{1}$ (OH, OAc, SO₂Ph, CHO, and C=C and C=C bonds) did not change in the electrolysis conditions. Epoxides $\underline{1h}$ derived from isosafrole provided 1-(3,4-methylenedioxyphenyl)propan-2-one ($\underline{2h}$) (82%), a synthetic precursor of α -methyldopa.⁹⁾ Similarly, menthene oxide $\underline{1i}$ gave a mixture of menthone and isomenthone (72%). Although epoxide $\underline{1i}$ of a long chain fatty acid (erucic acid) is less reactive, it could be converted to the corresponding ketone $\underline{2i}$ (82%) and acetonide $\underline{3i}$ (84%). Electrolysis of $\underline{1k}$ proceeded very slowly (1.22 F/mol), affording triphenylmethyl phenyl ketone $\underline{2k}$ (30%) along with benzophenone (69%). In contrast, the reaction of $\underline{1k}$ in a preelectrolyzed solution provided $\underline{2k}$ in 97% yield (After 2.53 F/mol, $\underline{1k}$ was added to the preelectrolyzed solution and stood for 2.5 h.).

The result of the electrochemical rearrangement $(\underline{1} \rightarrow \underline{2})$ apparently demonstrates usefulness of the electrolysis method (Table 2) in comparison with the conventional chemical acidcatalyzed reaction. On the contrary to the electrolysis, the action of BF₃ etherate in benzene which is one of the most widely employed reagents for the epoxide ring opening induced

		Product %		Proc	duct %
Epoxide $\underline{1}$	F/mol	<u>2</u> ^A , <u>3</u> ^B	Epoxide $\underline{1}$	F/mol 2	, <u>3</u> [₿]
R R				0.06 0.09	67 (83) [*]
	0.09 0.2	91 (86) ^{**}	h of the second	0.06 0.09	с 82 (85) [*]
<u>ь</u> сон	0.06 0.17	74 (70)*			
	0.03 0.1	80 (87) [*]		0.12	72 ^C
<u>а</u> сно	0.04 0.06	88 (83)**		0.23 2 ^{CO} 2 ^{Me 0.72}	82 ^D (84) [*] _G
	0.01 0.1	87 (88)*	$\frac{k}{2} \frac{1}{2}$	1.22	30 _
f so ₂ Ph	0.03 0.15	88 (85)**	Ph Ph	2.53	97 ^E

TABLE 1. Electrochemical Transformations of Epoxides 1 to Ketones 2 and Acetonides 3

A) $\frac{1}{2}$ (0.2 mmol), LiClO₄ (1 mmol) and Et₄NClO₄ (0.5 mmol) in CH₂Cl₂ (a - g), ClCH₂CH₂Cl (h, i, j), CH₂Cl₂-THF (k) (8 ml) at room temp. Current density (mA/cm²) 6.7 (a,b,i,k), 3.3 (d,e,g,h,j) and 1.7 (c,f). B) Yield of $\frac{3}{2}$ is indicated by (%): *; LiClO₄, **; Mg(ClO₄)₂. C) at 75 °C. D) at 65 °C. E) Reaction in a preelectrolyzed solution. F) $\underline{19}$ (2.4 mmol) G)53°C in part Wagner-Meerwein type rearrangement, affording 7-benzyloxy-2,2,5-trimethylheptan-1-al (16%) as a by-product along with the desired ketone 2a (77%).

Acid	Time	Product (%)	Acid	Time	Product (%)
	<u>2a</u>			<u>2a</u>	
Electrolysis	1 min	91			
сн _з соон	12 hr	0	60% HC10 ₄ aq	l min	77
нсоон	12 hr	0	TsOH	l min	47 ^e
сғ _з соон	1 min	49 ^b	47% BF ₃ - etherate ^c	l min	77 ^d

TABLE 2. A Comparison between Electrochemical and Chemical Acid-catalyzed Rearrangements of $\underline{1}\underline{a}$ to $\underline{2}\underline{a}$ in $CH_2Cl_2^a$.

a) Reaction of <u>la</u> with l eq of acid at room temperature. b) The corresponding diol monotrifluoroacetate (50%) was obtained . c) In benzene. d) 7-Benzyloxy-2,2,5-trimethylheptan-l-al (16%) was isolated as a by-product. e) <u>4a</u> (53%) was obtained as a by-product.

Acknowledgement: The authors are grateful to the Ministry of Education, Science, and Culture for a financial support by a Grant-in-Aid (No. 57118002) for the Special Project Research (Innovative Studies on Highly Selective Synthesis).

References and Notes

- (a) E. A. Mayeda, L. L. Miller, and J. F. Wolf, <u>J. Am. Chem. Soc.</u>, <u>94</u>, 6812 (1972). (b) E. A. Mayeda and L. L. Miller, <u>Tetrahedron</u>, <u>28</u>, 3375 (1972). (c) J. Y. Becker and B. Zinger, <u>J. Am. Chem. Soc.</u>, <u>104</u>, 2327 (1982). (d) Idem., <u>J. Chem. Soc.</u>, <u>Parkin II</u>, 395 (1982). (e) S. Torii, H. Tanaka, and S. Nakane, <u>Bull. Chem. Soc.</u>, Jpn., <u>55</u>, 1673 (1982).
- 2) (a) P. G. Gassman and Y. Yamaguchi, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 1308 (1979). (b) T. Imagawa, Y. Nakashima, and M. Kawanisi, <u>Chem. Lett</u>., 1609 (1980). (c) S. Torii, T. Inokuchi, and K. Yoritaka, <u>J. Org. Chem</u>., <u>46</u>, 5030 (1981). (d) S. Torii, T. Inokuchi, and R. Oi, <u>Ibid</u>., <u>47</u>, 47 (1982).
- 3) J. Delaunay, A. Lebouc, A. Tallec, and J. Simonet, J. Chem. Soc., Chem. Commun., 387 (1982)
- 4) Methylene chloride was once distilled over P205 and THF was dried with sodium-benzophenone and distilled.
- 5) After electrolyzing the solution $(CH_2Cl_2-THF-LiClO_4, 10 \text{ mA for 1 min, 0.03 F/mol}), \underline{1a}$ was added to the solution and allowed to react for 3 min.
- 6) R. Kossai, J. Simonet, and G. Dauphin, <u>Tetrahedron Lett.</u>, <u>21</u>, 3575 (1980).
- 7) (a) Ref. 1a and 1b. (b) L. C. Portis, J. C. Roberson, and C. K. Mann, <u>Anal. Chem.</u>, <u>44</u>, 294 (1972). (c) H. Schmidt and J. Noack, <u>Angew. Chem.</u>, <u>69</u>, 638 (1957).
- 8) Y. Pocker and B. P. Ronald, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 5311 (1980).
- 9) The BF₃ etherate catalyzed conversion of <u>lh</u> into <u>2h</u> (69%) was reported. J. Tsuji, H, Nagashima, and K. Sato, <u>Tetrahedron Lett.</u>, <u>23</u>, 3085 (1982).

(Received in Japan 3 March 1983)